نوشته شده توسط : زپو

 5 مقاله جدید در مورد عقیده کاوی


1- مقایسه کارایی طبقه بندی های مختلف متن برای عقیده کاوی در نقد کالا

2-کمی سازی گرایش احساسی نظرات متنی فارسی مشتریان بر روی کالای مشتریان بر روی ویژگی های کالا

3- مقایسه کارایی طبقه بندی های مختلف متن برای عقیده کاوی در نقد کالا

4-افزایش هوش تجاری براساس تحلیل عقاید در نقدهای فارسی

چکیده :

با گسترش تجارت الکترونیک و سیستمهای مدیریت درخواست مشتری، روزانه حجم عظیمی از دادههای متنی توسط کاربران بهطور مستقیم و غیرمستقیم تولید میشود. این دادههای متنی ارزش اطالعاتی بسیار باالیی دارند و واضح و بدیهی است که بررسی تمامی آنها بهطور دستی توسط انسان سخت و دشوار و در برخی موارد غیرممکن است. از طرفی خریداران یک محصول و حتی مدیران نیاز دارند تا اطالعات جامع و کارآمدی که حاصل تمامی نظرات داده شده است را مشاهده نمایند تا بتوانند در کوتاهترین زمان تصمیم درستی در خصوص کمیت و کیفیت در راستای گسترش خرید و یا فروش آن محصول اتخاذ نمایند. بررسی نتایج نشان میدهد که 11 %کاربران اینترنت قبل از خرید یک محصول یا خدمات راجع به آن جستجو نمودهاند و دیگر نظرات را مطالعه کردهاند. لذا در دهه اخیر، حوزه تحلیل احساست، نگاه بسیاری از محققان حوزه صنعت و دانشگاه را به خود معطوف کرده است اما متأسفانه بسیاری از این پژوهشها مختص زبان انگلیسی بوده و کارهای بسیار کمی در زبان فارسی صورت پذیرفته است. در این مقاله به ارائه چارچوبی خواهیم پرداخت که میتواند با استفاده از متون نقد کاربران در زبان فارسی قطبیت آن را پیشبینی نموده و ویژگیهای مورد نقد را استخراج نماید. در این راستای، ابتدا در مرحله پیشپردازش دادهها با جداسازی کلمات و جمالت، و ریشهیابی کلمات، اطالعات موردنیاز از نقدها استخراج شده و در گام بعدی با استفاده از مدل SVM نظرات و عقیده کاربران در مورد یک محصول و ویژگیهای آن طبقهبندی نمودیم. در پایان نیز مدل آموزش داده شده توانست با سرعت و دقت باالیی قطبیت نقدهای نوشته شده کاربران را بهدرستی پیشبینی نماید.

 

واژگان كلیدی: هوش تجاری، تحلیل احساسات، عقیده کاوی، پردازش زبان طبیعی، مدل SVM

5-مروری بر رویکردهای ارائه شده در نظرکاوی

چکیده:

به طور کلی، عقیده کاوی و تجزیه و تحلیل احساسات کمک می کند تا شرکت ها و ارائه دهندگان خدمات عقاید و احساسات مشتریان و کاربران خود را بدانند و بر اساس نیازهای مشتریان و کاربران محصوالت و خدمات خود را ارائه دهند. رایت در ]21 ] ادعا می کند که "برای بسیاری از کسب و کار ها، عقیده کاوی آنالین، یک نوع ارز مجازی است که می تواند باعث شکست یا موفقیت یک محصول در بازار شود.". از طرفی این حوزه یکی از برترین عالیق دانشمندانی مانند روانشناسان اجتماعی را تشکیل می دهد، طوری که در برخی منابع عقیده کاوی را باز شدن پنجره ای به روی تفکر روانی و واکنش آنالین جوامع می دانند. این مسئله به مطالعه و درک اذهان عمومی در جوامع در زمان های خاص )در مورد موضوعات خاص موجود در جامعه( کمک می کند. به عنوان مثال، عقیده کاوی می تواند برای تحلیلگران سیاسی در پیش بینی نتایج انتخابات استفاده داشته باشد.

کلمات کلیدی:عقیده ، عقیده کاوی ، آنتولوژی ، آنتروپی ، یادگیری ماشین ، احساسات ، شبکه عصبی ، زبان شناسی

 


خرید و دانلود  5 مقاله جدید در مورد عقیده کاوی




:: برچسب‌ها: عقیده , عقیده کاوی , آنتولوژی , یادگیری ماشین , احساسات , شبکه عصبی , زبان شناسی , پردازش زبان طبیعی , هوش تجاری , تحلیل احساسات ,
:: بازدید از این مطلب : 87
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 21 بهمن 1395 | نظرات ()
نوشته شده توسط : زپو

 7 مقاله جدید در رابطه با متن کاوی


کنفرانس بین المللی پژوهش های کاربردی در فناوری اطلاعات، کامپیوتر و مخابرات (19 نوابر 2017)

بررسی انواع منابع دارای ساختار و منابع بدون ساختار و پیش پردازش های ابهام زدایی مفهوم کلمات در پردازش زبان طبیعی:

چکیده :

دانش مهمترین بخش ابهام زدایی مفهوم کلمات است. این دانشها میتوانند در شکل های گوناگون و به صورت یک مجموعه از متون باشند که در آن مفهوم کلمه برچسب گزاری شده است. پایگاه دانش یک مجموعه از متن، برچسب ها و توضیحات در جهت تشخیص مفهوم کلمه است. مانند فرهنگ لغت قابل خواندن توسط ماشین، شبکه معنایی، اصطالحنامه و آنتولوژی. تقریبا از تمام این منابع در ابهام زدایی مفهوم کلمات استفاده میشود. کلیه منابع به دو دسته منابع دارای ساختار و منابع بدون ساختار تقسیم میشوند. جمله ورودی، یک متن بدون ساختار از اطالعات است. برای کسب مفهوم صحیح کلمات باید بر روی آن پیش پردازشهایی انجام شود تا بتوانیم بستری را فراهم نماییم که بتوان بهترین مفهوم را بدست آورد. در این مقاله، منابع دارای ساختار و منابع بدون ساختار و پیش پردازش های ابهام زدایی مفهوم کلمات در پردازش زبان طبیعی را مورد بررسی قرار می دهیم که بر اساس بررسی های انجام شده، استفاده از وردنت پیشنهاد می شود که یک منبع ضروری برای ابهام زدایی مفهوم کلمات است و یک منبع دارای ساختار می باشد.

کلمات کلیدی: اصطالحنامه، فرهنگ لغتهای قابل خواندن توسط ماشین، آنتولوژی، وردنت، Corpora

مروری بر روشهای خالصه سازی خودکار متون:

چکیده :

امروزه پردازش زبان طبیعی در زمینه های گوناگون نظیر خالصهسازهای خودکار و مترجمهای 1 ماشینی ، توجه زیادی را به خود جلب نمودهاند. در زبان فارسی هم مانند سایر زبانهای دیگر دنیا تالشهایی در زمینه ساخت ابزارهای خالصه سازی صورت گرفته است. تمرکز محققان بر ارایه روشهایی متمرکز است که بتواند خالصه هایی پر محتوا، سلیس و روان نسبت به روشهای خالصه سازی پیشین ارایه دهند . خالصه سازی یک مهارت نگارشی به شمار می رود، که هدف از ایجاد سیستم خالصه ساز اتوماتیک تقلید کلیه مراحلی است که توسط عامل انسانی انجام می شود، بدین صورت کهمتن به طور کامل خواندهوفهمیده شودوبا تشخیصوتفکیک قسمت های مهم وغیرمهم متن، نسخه خالصه شده متن اصلی تولید گردد. هدف از خالصه سازی خودکار سند، تولید یک نسخه مختصرتر از سند اصلی توسط یک برنامه رایانهای بهنحویکهویژگیهاونکاتاصلی سند اولیه حفظشود.بنابرتعریفارائه شدهدراستاندارد 212 ISO ،خالصه "یک بازگویی مختصر از سند" می باشد. روش های تولید خالصه را با توجه به انواع دیدگاه های مختلف خالصه سازی می توان به چندین دسته تقسیم بندی نمود، به عنوان مثال روش تولید خالصه تک سندی و چند سندی، تک زبانه و چند زبانه، مبتنی بر تعامل با کاربر و غیر مبتنی بر تعامل با کاربر و... لیکن با توجه به اهمیت فاکتور خروجی در تولید خالصه در این مقاله به بررسی روش های تولید خالصه گزینشی)استخراجی( و چکیده ای)مفهومی( پرداخته می شود.

واژگان كلیدي:پردازش زبان طبیعی، خالصهسازهای ماشینی، روابط کالمی ، تشابه معنایی، شبکه واژگان

 

ارزیابی سیستماتیک متون دانشجویان در کلاس های مجازی آنالین

چکیده :

عدم تعامالت و ارتباطات مستقیم اساتید و دانشجویان منجر به عدم تمرکز ایشان در کالس های مجازی می شود . از آنجا که ارزیابی همواره ابزار مناسبی برای ایجاد تمرکز و مشارکت دانشجویان بوده است منطقی است که به دنبال ابزاری جهت برآورد میزان مشارکت دانشجویان در کالس های آنالین باشیم . در این مقاله سعی داریم با استفاده از روش های متن کاوی ، پردازش زبان طبیعی و ترجمه ماشینی به الگوریتمی جهت ارزیابی متون وارد شده از سوی دانشجویان و تخصیص امتیاز به هر متن دست یابیم و بتوانیم پس از پایان کالس با محاسبه ، ثبت و اعالم برآورد امتیازات هر دانشجو به یک ارزیابی از میزان مشارکت مفید دانشجو در کالس های آنالین دست یابیم . واژههای کلیدی متن کاوی ، پردازش زبان طبیعی ، ترجمه ماشینی ، پایگاه داده ها

ایجاد و انتشار زیر ساخت وب معنایی براي قرآن کریم

چکیده شده است. تبدیل شناسی کامپیوتر و زبان حوزهو پژوهشگران محققان اساسی هاي یکی از دغدغهبه هاي اخیر در سال ايرایانهشناسی زبان یبا سرعت و دقت قابل توجه متن راپردازش که بتوان بسیاري از کارهاي مرتبط با ستا و ابزارهاي هوشمند باعث شده رایانهاستفاده از هاي پیکره پردازد. زبان می هايابزاري براي بیان ویژگیبه عنوان ی متن يهایکرهدر حوزه متن به پردازش پ یعیانجام داد. پردازش زبان طب واعد و ساز و کار زبان پی توان با تحلیل آنها به استخراج اجزا، قمتنی در واقع نمادي از زبان هستند که با هدف خاصی تولید گردیده، می ینا يمحتوا يرا در ارائه یمناسب یپژوهش یط، محيایانهرا هاييفناور یريمتون و با بکارگ يسازیو غن يفرآور بادر مرحله بعد، برد و .نمود یجادکارآمد ا يامتون به گونه ي و زیرساختی که تحت عنوان پیکرهپیکره متنی "فرقان" اي هوشـمند گیـري از سـامانه حاصـل بهـره د گردیده، تولیقرآن کریم براي ي اطلاعات قرآنی، آماري، متن و ترجمـه فارسـی و انگلیسـی آیـات و برچسـب کلیهحاوي مگابایت داده، 587 .این پیکره با بیش از است - و بسـیاري مـوارد دیگـر در قالـب ایابی کلمات آنهمتن عربی، فارسی و انگلیسی آیات، ریشهصرفی و نحوي گذاري RDF امکـان و سـت ا .استفاده و کاوش را براي هرگونه پژوهش و پردازش هوشمند ایجاد کرده است کلید واژه پردازش زبان طبیعی، پیکره، وب معنایی، قرآن کریم، RDF.

نگرشی جدید به تحلیل عبارت هاي اسمی هم مرجع

چکیده:

پردازش زبان طبیعی شامل وظایفی همچون استخراج اطلاعات، خلاصه سازي متن، پرسش و پاسخ می باشد که همگی نیاز دارند تا تمام اطلاعاتی که در مورد یک موجودیت در متن وجود دارد را شناسایی نمایند. بنابراین وجود سیستمی که بتواند موضوع تحلیل عبارت هاي اسمی هم مرجع را بررسی نماید، کمک شایانی به انجام موفقیت آمیز این وظایف خواهد نمود. ما در این مقاله، سعی داریم تا به طور دقیق، فرآیند تحلیل مرجع مشترك را بررسی نمائیم. در همین راستا نیز فرآیند مشابه دیگري تحت عنوان تحلیل پیشایند را نیز مطالعه خواهیم نمود. امید داریم تا با بررسی این فرآیند و مقایسه ي شباهت ها و تفاوت هاي آنها، به نگرشی جدید در مورد تحلیل عبارت هاي اسمی هم مرجع برسیم.

کلمات کلیدي :پردازش زبان طبیعی، استخراج اطلاعات، تحلیل مرجع مشترك ، تحلیل پیشایند

تعیین احساس از روي متن فارسی

چکیده:

در بسیاري از کاربردهاي تبدیل متن به گفتار بهتر است تا مشخصات گفتار تولید شده هرچه بیشتر شبیه به انسان باشد. براي این کار باید متنی که توسط سیستم ادا میشود، از لحاظ معنایی بررسی شود. یکی از مهمترین این ویژگیهاي معنایی، احساس حاکم بر متن است. در زمینه تعیین احساس از روي متن، کارهاي مختلفی در زبان انگلیسی صورت گرفته است؛ اما کمتر کسی اقدام به کار بر روي پیکرههاي فارسی کرده است. در این مقاله، پیکره اي شامل 3702 جمله از 6 کلاس احساس خوشحالی، عصبانیت، خنثی، ناراحتی، تنفر و ترس تهیه شده است و روشهاي گوناگونی جهت تعیین احساس از روي یک جمله متنی به زبان فارسی به کار گرفته شده است. با بررسی نتایج بدست آمده متوجه میشویم که عملکرد برنامه در صورت استفاده از رویکرد مبتنی بر پیکره مطلوب است و داراي حداکثر دقت 85/78 %و زمان بسیار کوتاه آموزش میباشد.

واژههاي کلیدي: پردازش زبان طبیعی، مدل زبانی، تحلیل معنایی، یادگیري ماشین، Bayes Naïve Complement

 

 


خرید و دانلود  7 مقاله جدید در رابطه با متن کاوی




:: برچسب‌ها: داده کاوی , نظر کاوی , عقیده کاوی , متن کاوی , text mining , مقاله فارسی متن کاوی , مقاله 2017 متن کاوی ,
:: بازدید از این مطلب : 87
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 29 آذر 1395 | نظرات ()

صفحه قبل 1 2 3 4 5 ... 6341 صفحه بعد